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Abstract: We propose an unmanned aerial vehicle (UAV) failure detection system as the first step of a
three-step autonomous emergency landing safety framework for UAVs. We showed the effectiveness
and feasibility of using vibration data with the k-means clustering algorithm in detecting mid-
flight UAV failures for that purpose. Specifically, we measured vibration signals for different faulty
propeller cases during several test flights, utilizing a custom-made hardware system. After we
made the vibration graphs and extracted the data, we investigated to determine the combination
of acceleration and gyroscope parameters that results in the best accuracy of failure detection in
quadcopter UAVs. Our investigations show that considering the gyroscope parameter in the vertical
direction (gZ) along with the accelerometer parameter in the same direction (aZ) results in the highest
accuracy of failure detection for the purpose of emergency landing of faulty UAVs, while ensuring a
quick detection and timely engagement of the safety framework. Based on the parameter set (gZ-aZ),
we then created scatter plots and confusion matrices, and applied the k-means clustering algorithm
to the vibration dataset to classify the data into three health state clusters—normal, faulty, and failure.
We confirm the effectiveness of the proposed system with flight experiments, in which we were able

check for to detect faults and failures utilizing the aforementioned clusters in real time.
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spraying to industrial inspection, and from aerial videography to payload carrying, they
are making many laborious tasks more efficient. However, regulators still prevent mass
adoption of UAVs in public spaces because of the safety challenges; the main concern being

if a drone suffers a mid-flight failure, it could crash and cause catastrophic damage to the
people or properties nearby. We are designing safety measures to reduce the damage that
UAVs can make when mid-flight failures happen. Further, these damages are not limited
only to the environment, but also to the UAV itself and its payload. Failures can occur
due to poor health and existing faults in the main components of a UAV [1]. Researchers
address the challenge of reducing fatal UAV crashes by estimating their health status and
diagnosing occurring faults using Predictive Maintenance and Prognostics and Health
Management (PHM) in refs. [2,3]. Various learning algorithms with reliable performance
also optimize the health of UAVs, such as the works in refs. [4-7].

To address the challenge of mid-flight system failures in UAVs, we propose a three-step
safety framework that includes:
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In this paper, we specifically look at the first step, and propose a failure detection
system that has an acceptable accuracy of detecting faults and is quick enough to detect
failures such that the second and third steps are activated promptly and effectively. For
this purpose, we want to accomplish the first step in less than 1 s. In other words, if the
system detects a failure within one second, we consider that acceptable, and if it takes more
than a second to detect a failure, that would be unacceptable. We identify any UAV failure
by focusing on health monitoring and data acquisition of processed vibration signals to
identify system changes that show failure or faults. The second step, finding an uncluttered
and safe landing zone, involves the use of image processing algorithms such as YOLOv5
on videos and images from a camera, to select the best landing spot. Researchers recently
published a study considering the second step in ref. [8]. In the third step, an independent
propulsion system can steer the UAV to the uncluttered landing zone.

Fault and failure are sometimes used interchangeably in unmanned aerial vehicle
literature; however, in this work, we distinguish them based on the following explanation.
A fault is a defect in one of the system components that does not prevent the vehicle
from continuing its operation. In contrast, a failure is a state where the system can no
longer operate. A CNC rolling machine with a crack defect is an example of a fault, while
a fractured helicopter driving gearbox is an example of a failure. UAVs that suffer any
fatal crash have components that are subject to failure, which can happen for a variety
of reasons. UAVs have three categories of failures: structural failures, electrical failures,
and communication failures [9]. Each UAV consists of structural components that have
mechanical functions, such as motors, propellers, and actuators. Motor failure can occur for
any multi-rotor UAV if at least one motor malfunctions at some point during a flight [10].
Propeller failure occurs with damaged propeller pairs or with an unbalance of mass [11].
Actuator failure exists with a diagnosed fault for the actuator that cannot deflect control
surfaces for fixed-wing UAVs [12]. Furthermore, electrical failures can also occur when
the UAV has malfunctioning electrical components, such as sensors or batteries. Moreover,
sensors that operate past their temperature or voltage range during a flight are prone to
sensor failure [13]. Battery failure is also possible if the main UAV battery attains extremely
poor quality with significant damage [14]. Moreover, communication failure includes issues
from the GPS, radio, and controller components, where the controller loses communication
despite the UAV being in range, when bad weather affects the UAV flight, or in areas where
the signal is poor [15].

In this paper, we specifically look at quadcopter UAVs and cover the first step of the
framework, UAV failure detection, to achieve the objective of increasing the safety and
minimizing crashes in faulty UAVs. The goal of the safety framework is to minimize the
damage to people and property, as well as the UAV and its payload. Here, we propose a
fast and accurate failure detection system that uses an unsupervised learning algorithm,
k-means clustering. Researchers implemented this algorithm in different UAV applications,
such as horizon detection and fault diagnosis [16-18]. However, UAV failure detection
with the k-means clustering algorithm is not seen in the literature, and our novel system is
the first to address this algorithm for the safety framework of emergency landing for UAVs.
To successfully detect UAV failure, we analyze vibration signals during a flight using
an inertial measurement unit (IMU) sensor for detecting propeller failure. We consider
different propeller fault configurations, as mechanical damage in the propellers causes
large vibrations due to the presence of unbalanced forces. Then, we define three health
states; normal, faulty and failure; we employ k-means clustering to classify the health of
the UAV based on the acquired data. Our investigations show that this proposed method
is efficient in finding failures quickly and accurately, while fulfilling the first-step of the
safety framework. We also validate the UAV failure detection system in experimental
flights using a light-emitting diode (LED) subsystem for a visual representation of the
proposed algorithm.

The organization of the paper is as follows: Section 2 describes the related works
and identifies the gap that we try to bridge; specifically using k-means clustering for fast
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and accurate failure detection as a part of an emergency landing safety framework for
quadcopter UAVs. In Section 3, we thoroughly discuss the experimental setup for the
experiments conducted. In Section 4, the proposed method for the UAV failure detection
system is presented. In Section 5, results are shown and discussed, followed by the
conclusion in Section 6.

2. Related Works

Different groups have performed research for UAV failure detection in experimental
and simulated studies. For instance, the Air Lab Fault and Anomaly (ALFA) dataset
identifies different failures, such as engine full power loss and control surface failures like
rudder stuck to the left, for a fixed-wing UAV equipped with an onboard computer [19].
The first ground truth failure message for each control surface appears 0.2 s after the
exact moment of the fault. A different group used horizontal takeoff and landing (HTOL)
and vertical takeoff and landing (VTOL) UAVs for assessing failure in ref. [20], where
a theoretical model analyzes a fixed-wing UAV spiraling down to the ground. Three
prescribed circles for both HTOL and VTOL used safe path landing from the simulation.
This study showed that crashes for HTOL UAVs have fewer fatalities than VTOL UAVs,
since the calculated expected level of safety was higher for HTOL UAVs. A simulated flight
controller used the reinforcement landing algorithm that trains a neural network model to
detect mid-flight UAV failure for structural components with a recurrent neural network
(RNN) and fault-tolerant bio-inspired flight controller (FT-BFC) [21,22]. Researchers plotted
quadcopter position and speed for waypoint tracking; these algorithms helped detect
failure within 2.5 s and achieved the desired waypoint in a shorter time. The method in
ref. [23] also used a neural network model, but researchers took acoustic measurements of
the UAV making noise, such as sound pressure level, in an anechoic chamber for extracting
features. The model attained an accuracy of 0.9763 when detecting unbalanced UAV
propeller blades.

Other researchers performed vibration analysis during the flight to monitor the health
status of the UAV, where an accelerometer measured vibration signals, in the frequency do-
main, for different cases of defective propellers without the need for additional sensors [24].
This study considered single damaged and two broken propellers utilizing discrete Fourier
transformation for measuring the signals; this method proved efficacious for identifying
damaged propellers. In another study, signal processing detected the physical impairment
of the Falcon V5 rotor blades using support vector machine (SVM) [25]. Their algorithm
estimates the fault diagnosis of rotor blades model-free; of the three performance labels
from the experimental verification, fast Fourier transform was the best in detecting failure
for UAV propeller blades in 250 ms. In ref. [26], the IMU sensor also measured the in-flight
vibration data of a fixed wing UAV for bearing faults to detect bearing failure. The study
proved that the vibration anomaly indicator (VAT) is a useful diagnostic feature of UAV
health monitoring, attaining positive values between 600 s and 1500 s. In ref. [27], a one-
dimensional convolutional neural network (1D-CNN) deep learning algorithm identified
the rotor fault of a UAV, which reconstructed a sample of vibration acceleration signals. The
method that used 1D-CNN algorithms was more efficient than traditional signal analysis
and modeling methods, as the algorithm achieves accuracies as high as 86%. In ref. [4], re-
searchers detected failure using the self-organizing map (SOM) algorithm which measures
its health status using acceleration and gyro sensors for the propeller and motor states.
Clustered graphs contained chosen neurons for failure classifications, and the SOM model
had an accuracy of 99% and recall of failure situation of 100% in this study. In ref. [7],
fault detection and identification techniques for quadcopters utilized airborne acceleration
sensors for measuring airframe vibration signals, and long- and short-term memory (LSTM)
and back propagation (BP) algorithms used test and training samples to detect propeller
faults. Between the two models, the LSTM model was more accurate than the BP model,
since the accuracy of the LSTM model was 96%, and the BP model was 65%.
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In ref. [28], a hall sensor measures current from brushless direct current (BLDC) motors
for detecting a small inter-turn fault in a quadcopter. The skewness scanning algorithm for
multi-resolution analysis determines the number of shorted-turns as roll, pitch, and yaw,
and inputs monitor skewness values. Researchers selected the skewness of approximate
coefficients for levels 5 and 6 (SA5 and SA6) for pitch and levels 5, 6, and 8 (SA5, SA6,
and SAS8) for yaw for detecting the number of shorted-turns in the BLDC motor since their
skewness values were precise. In refs. [29,30], researchers measured the density of vibration
peaks for signal analysis based on chaos using density of maxima (SAC-DM) using an
onboard accelerometer to estimate the BLDC motor speed. They measured SAC-DM
values and achieved failure detection in one second, as the average accuracy attained
was 82.75%. In ref. [31], researchers implemented a dynamic fault detection algorithm for
partial and complete motor failure. Their quadrotor with enabled fault tolerant control
(FTC) achieved smooth landing as the drone regulated the attitude in 7t/6 radians. In other
words, the measured roll and pitch angles were between —7/6 and 7/6 radians for FTC
analysis. If motor failure exists, then a redundant flight recovery system (RFRS) monitors
the motor health and tries to complete UAV operation [32]. As the number of working
rotors changed from eight to four, RFRS was active in providing precise pitch and roll
angles for X,qq4 (motors 1, 3, 5, and 7) and Xeven (motors 2, 4, 6, and 8) flight attitudes. The
measured vibration signal of a UAV motor improves the performance and stability of a
UAV, as researchers made a correlation between stability and motor vibration [33]. The
vibration amplitude of the faulty motor was 0.169 mm/s?, compared to the qualified motor
of 0.0746 mm/s?, which shows that higher vibration amplitudes indicate UAV failure.
Furthermore, the Arduino microcontroller obtained data for motor current signals and
propeller vibration signals from current sensors and accelerometer based on different
fault configurations [34]. The Q-learning and genetic algorithm (QFAM-GA) had the best
performance of 94%, compared to the other algorithms in the study.

Table 1 outlines the relevant sources that compare the UAV used, the different types of
failure, and the algorithm implemented. Based on simulated and experimental studies from
the literature review, we found that structural failure, especially propeller and motor failure,
is the most common type of failure. These studies use distinct configurations for the number
of working propellers and motors. In general, UAVs that suffer a fatal crash typically have
a failure in structural components. Supervised, unsupervised, and reinforcement learning
algorithms create different classifications for the datasets. The combination of different
algorithms, datasets, and extracted features ensues different results. In our study, we
use a quadcopter to detect propeller failure, and our algorithm uses k-means clustering.
Although this algorithm is simple and versatile, it arranges datasets in their respective
clusters to determine the degree of existing UAV faults. We propose to include a visual
representation of the working algorithm with an LED subsystem that contains three LEDs.
We specify boundary conditions for a scatter plot that uses k-means clustering where one
LED turns on at a time. To our knowledge, our study is the first one to use k-means
clustering and an LED subsystem for UAV failure detection.

Although researchers achieved accurate results from using working algorithms and
state of the art methods, the literature also mentions limitations of UAV failure detection
methods. In ref. [21], recovery for propeller failure was harder to accomplish because
of insufficient thrust and lost degree of freedom. In ref. [22], the quadcopter interceded
sudden changes in position when changing the number of working motors, which caused
greater noise. A modulated broadband noise between the 2 and 20 kHz frequencies had
the highest noise values, which occurred due to unstable aerodynamics for the interaction
of the air flow with the drone frame [23]. The fault detection system was not capable of
determining the exact rotor that failed since the center of the UAV had the IMU sensor [25].
In ref. [27], the final recognition effect for weaker fault categories was insufficient in using
a sequential sampling method. In ref. [29], the SAC-DM method had difficulty in achieving
failure diagnosis.
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Table 1. Comparison of Failure Detection Types with Related Works.

Reference UAV Type of Failure Algorithm Findings
Propeller failure was detected
. . . Recurrent Neural in 2.5 s by using an RNN for
Arasanipalai et al., 2020 [21]  Quadcopter Propeller Failure Network (RNN) two and three working
propellers in a quadcopter
Support Vector The best performance label for
Bondyra et al., 2017 [25] Quadcopter Propeller Failure PPe failure detection is fast Fourier
Machine (SVM) S
transform, even within 250 ms
Based on the confusion matrix,
Motor and Propeller Self-Organizing Map the SOM model has an
Cheng etal., 2019 [4] Quadcopter Failure (SOM) accuracy of 99%, and recall of
failure situation is 100%
Fault-Tolerant Bio FT-BFC maximizes the
Dooraki et al., 2020 [22] Quadcopter Motor Failure Inspired Flight accumulated reward over time,
v P Controller and can reach the desired
(FT-BFC) waypoint in a shorter time
Control Surfaces . The failure ground-truth
Keipour et al., 2020 [19] Fixed-win Failure (Engine, I;IO ai;goélth;rll message happens within 0.2 s
cipour etak, € & Aileron, Rudder, dl:; t?assit er(;\;)i deyd after the exact moment of
Elevator) P the fault
The redundant flight recovery
system is operational for X,qq
Magsino et al., 2020 [32] Octocopter Motor Failure Fuzzy Logic and Xeven flight attitudes,
providing effective
angle responses
Parameters SA5 and SA6 for
Skewness pitch ! and SA5, SA6, and SA8
Ray et al., 2021 [28] Quadcopter Motor Failure . for yaw have precise skewness
Scanning - .
values and minimal errors for
motor short turns
Long. st Tom ¢ ST il ouperos
Zhang et al., 2021 [7] Quadcopter Propeller Failure Memory (LSTM) and e . .
. classification, with accuracies
Back Propagation (BP)

of 96% and 65%, respectively

1 Skewness of Approximate Coefficients for Levels 5, 6, and 8 for pitch/yaw.

3. Experimental Setup

3.1. Hardware System Design

We mounted a custom-made hardware system onto a quadcopter to successfully
measure vibration and detect failure. For each conducted experiment, we used Parrot
ANAFI as the quadcopter, which is foldable, lightweight, and easily deployable. Figure 1
shows the hardware system with the following labeled parts: Arduino Uno, prototype
shield, GY-521 sensor, HC-05 Bluetooth module, mini breadboard, Duracell 9 V battery,
LED, and 220 Q) resistor. Square fasteners placed the hardware system onto the Parrot
quadcopter before the flight experimentation began.

Arduino Uno Rev3 was the microcontroller board with an ATmega328P processor that
uses data acquisition. It had 14 digital input/output pins and 6 analog pins for electronic
connections. The corresponding software for this microcontroller board is Arduino IDE,
which is capable of reading sensor data through a written code. The prototype shield was a
base that housed the mini breadboard and 9 V battery.
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- Arduino Uno

- Prototype Shield

- GY-521 Sensor

- HC-05 Bluetooth Module
- Mini Breadboard

- OV Battery

-LED

- 22002 Resistor

O A WN =

~l

8

Figure 1. Designed Hardware System.

Moreover, the GY-521 sensor included a 3-axis accelerometer, a 3-axis gyroscope, a
digital motion processor, and a temperature sensor, which collected the vibration signals
from the quadcopter. Variables aX, aY, and aZ represent acceleration in the x-, y-, and
z-directions, and variables gX, gY, and gZ represent gyroscope data in the x-, y-, and z-
directions, respectively. We soldered the GY-521 sensor to a pin header, which was placed
on the mini breadboard. The HC-05 Bluetooth module transferred the vibration data from
the GY-521 sensor to Arduino IDE, with available Bluetooth on the computer. The mini
breadboard contained three LEDs (one blue LED, one yellow LED, and one red LED) which
detected different health states for the LED subsystem (Section 4.4 provides a thorough
explanation of the LED subsystem). Three 220 () resistors regulated the flowing current
for each LED. Although a USB cable supplied power to the Arduino Uno, the Duracell 9 V
battery was the power source we used, which helped provide power to the GY-521 sensor,
the HC-05 Bluetooth module, and the LEDs during the flight.

Figure 2 shows the electrical schematics for the labeled components.

Jumper wires, 10 cm in length, made the following pin connections. In Figure 2a, for
the GY-521 sensor connecting to Arduino Uno, VCC goes to 5 V, GND goes to GND, SCL
goes to SCL, and SDA goes to SDA. For the HC-05 Bluetooth module, VCC goes to 5V,
GND goes to GND, RXD goes to pin 0, and TXD goes to pin 1. In Figure 2b, the positive
ends of the blue, yellow, and red LEDs connected pins 11, 12, and 13 on Arduino Uno,
respectively. The 220 () resistors connected the negative ends of each LED and GND.

3.2. Cases for Propeller Faults

We flew the Parrot ANAFI quadcopter to collect vibration data needed for failure
detection that prevents unintended crashing in urban and rural environments. We proposed
different cases of propeller faults with 7 mm cut propellers. Faulty propellers replaced
normal propellers using a small wrench in between flights. This study considers three
propeller fault cases for the main experiment of measuring vibration: zero sets of faulty
propellers (healthy), one set of faulty propellers (1SFP), and two sets of faulty propellers
(2SFP) (see Figure 3).
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fritzing

fritzing

(b)

Figure 2. Schematic of Hardware Setup for (a) Sensor and (b) LEDs.

EXE

(a) (b) (c)

Figure 3. Cases for Propeller Faults with (a) Healthy, (b) One Set of Faulty Propellers (1SFP), and (c)
Two Sets of Faulty Propellers (2SFP).
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For the first case (healthy), the quadcopter flew smoothly, establishing all working
propeller sets. We expected minor faults and zero failure to occur when conducting these
flight experiments. For the second case (1SFP), one rotor had two propellers with 7 mm cuts
on both ends. The faulty propellers affected the total thrust and the overall dynamics for
the Parrot ANAFI quadcopter. We expected moderate faults and possible failure to occur as
the IMU sensor measures higher vibration magnitudes than the previous case. For the third
case (2SFP), we attached two faulty propellers to two rotors. We expected severe faults and
obvious failure to occur, due to the sensor measuring higher vibration magnitudes.

4. UAV Failure Detection System

In this paper, we developed a novel UAV failure detection system as a part of the
safety framework to address safety concerns for communities and reduce the number of
catastrophic UAV crashes. We propose the following five steps to successfully detect failure
(see the block diagram in Figure 4):

Step 1: Conduct Flight Operations (Flight)

Step 2: Perform Vibration Measurements (Vibration)

Step 3: Extract Data using Arduino (Data Extraction)

Step 4: Apply Clustering Algorithm (Clustering)

Step 5: Decision-Making for Failure Detection (Decision-Making).

o )— [ — ) — [ — =)

Figure 4. Block Diagram for Failure Detection Model.

Figure 5 shows the UAV failure detection model flowchart for utilizing the five steps.
The vibration measuring process involves the GY-521 sensor measuring in-flight vibration,
sending the vibration data to Arduino, and data extraction. The first orange diamond block
looks at propeller fault detection, and the second orange diamond looks at failure detection.

Conduct Flight
Operations
Measure Vibration
from Sensor
Send data o
Arduino
Extract Proceed with
Data Caution
J\ No
o P
N Y, -~ S
o - Prop. Fault ™ €s -~ Failure ™ Yes EMERGENCY
—_— —_—
. Detected? _~ S Detected? /-> MODE
~ -
. > >
~ ~

Find the Nearest
Landing Zone

End

Figure 5. UAV Failure Detection System Flowchart.
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If none of the propellers have any fault, then the vibration measuring process occurs
again in several iterations until the flight is over. Otherwise, if propeller fault exists without
failure, the quadcopter would proceed with caution. In the case that the system detects both
propeller fault and failure, the quadcopter engages in emergency mode, and the nearest
safe landing zone is found immediately to avoid catastrophic crashes.

4.1. Conduct Flight Operations

The Parrot ANAFI quadcopter must fly to detect failure and reduce the number of
catastrophic crashes in urban and rural environments. We flew the quadcopter inside
a large, enclosed cage in an indoor lab, and we performed experiments with different
propeller cases. The quadcopter had 15 flights, where the healthy, 1SFP, and 2SFP propeller
fault cases had five flights each, and a flight time of 4 min each. Given that we used the
9V battery and attain 0.14 A for the measured current, the power that the failure detection
system used was 1.26 W. Before flying the quadcopter, we secured the hardware system
onto the drone, and we placed the quadcopter in the center of the enclosed cage. We
recharged the drone when it approached low battery in between flights. We did not use the
LED:s in this step, but we used them in the final step, decision-making for failure detection.

4.2. Perform Vibration Measurements

Figure 6 shows the Cartesian coordinate system for the quadcopter and hardware
system combined, where the coordinate system directs the x- and y-axes along the horizontal
plane and directs the z-axis orthogonal to the horizontal plane. The GY-521 sensor from the
hardware system measures in-flight vibration signals for acceleration and gyro in the x-, y-,
and z-directions. Next, the HC-05 Bluetooth module sends the vibration data from the
Arduino Uno microcontroller to the computer, and Arduino IDE reads the vibration data,
which contains three different propeller fault configurations (healthy, 1SFP, and 2SFP).

Figure 6. Quadcopter and Hardware System Coordinate System.

4.3. Extract Data Using Arduino

Arduino IDE displays the following six parameters with a written C++ code during
each flight: aX, aY, aZ, gX, gY, and gZ (see Figure 7). We extracted the data by copying and
pasting each parameter value into Excel. The input for each vibration graph is timestep (in
minutes), and the output is one of the measured parameters (in least significant bit, LSB).
Each vibration graph shows recorded data from the three propeller cases (healthy, 1SFP,
and 2SFP). Since we obtained 15 flights in total during the experiment, we recorded data
for five sets of three flights (S1 to S5).
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4.4. Apply Clustering Algorithm

We performed data analysis for each vibration graph with the k-means clustering
algorithm to classify different health states into k clusters given n objects. We aimed to
minimize the Euclidean distance between each data point and the nearest centroid. Let x;
be the training set, yi; be the centroid set, and | be the objective function.

J=Y o o I = 1)

Additionally, let ¢() be the output cluster vector. Minimizing the objective function
finds the centroid value.

D = argjmin Hxl(j) — yj2|| ()
o v m o (G) )
i 2) i (xi VJ) =0 ®)
DY) xfj)
MR @

In ref. [35], the authors fully explain this algorithm. We investigated different pa-
rameter combinations to evaluate the best parameter set for failure detection in faulty
UAVs as the first step of the three-step safety framework for faulty UAVs, and applied the
k-means clustering algorithm to this chosen parameter set. We also investigated whether
the algorithm was fast and accurate enough for the first step of the safety framework and
confirmed the effectiveness and feasibility of the proposed system for use in the safety
framework by conducting experimental flights.

We used the dataset for k-means clustering involving parameter sets that have a
selection of six measured parameters. Let n be the number of parameters selected, or
dimension, where n € {1,2,3,4,5,6}. Each dataset would have 750 data points from the
fifteen flights, written as (x, ..., x, ). For instance, if the dataset contained the parameters
gY, gZ, and aZ, we would write the data points as (x1, X2, x3), where x; is the gY value,
xy is the gZ value, and x3 is the aZ value. Excel presented the datasets as we carefully
selected 50 output values from each vibration curve of the selected parameters, writing it
as (x1,...,x,). We took the absolute value for all the data points prior to using the k-means
clustering algorithm. Table 2 shows different combinations of parameter sets for this paper.



Sensors 2022, 22, 6037

11 of 21

Table 2. Selection of Parameters and Dimensions.

Dimension Parameter Set

aY
az
gY-aY
gZ-aZ
gX-gZ-aX
gY-gZ-aZ
gY-gZ-aY-aZ
gX-gY-gZ-aY-aZ
gX-gY-gZ-aX-aY-aZ

—_

NIl WWDNDN -

We imported each dataset into MATLAB, and we wrote a code for applying the
k-means clustering algorithm with k =3 and #n = 750 to the datasets. Scatter plots titled
“Quadcopter Failure Detection Clusters” (QFDC) showed three clusters: normal state,
faulty state, and failure state. For computational complexity for the k-means clustering
algorithm with d = 2 attributes, the time complexity is O(4500), and the space complexity is
O(753).

For each QFDC plot, we used 3 x 3 confusion matrices for the failure detection system
(see Table 3), where the letters F, A, and N denote “failure state,” “faulty state,” and
“normal state” for the three health states, respectively. Data points that have the health state
classified before importing in MATLAB have one “actual label.” In contrast, data points
grouped into different clusters after running the MATLAB code with k-means clustering
have one “clustering label.” Both the actual label and the clustering label contain the three
health states. The leftmost column in Table 3 is the actual label, which uses the first letter in
each cell, and the topmost row is the clustering label, which uses the second letter in each
cell. Each data point compares the health state between the actual label and the clustering
label for the confusion matrix. For instance, “AF” means that the actual label is the fault
state, while the clustering label is the failure state. Equations (5)—(8) show performance
metrics for recall, precision, accuracy, and F-Score, given the 3 x 3 confusion matrix.

FF

Recall = FF AF T NF ©
.. FF
Precision = FF T FA T EN (6)
total

2xRecall * Precision
F = Score = Recall + Precision ®)

Table 3. General 3 x 3 Confusion Matrix.

Clustering Label Failure Faulty Normal
Actual Label State State State

Failure

State FF FA FN
Faulty

State AF AA AN

Normal NF NA NN

State
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4.5. Decision-Making for Failure Detection

Once we obtained the QFDC plots and their confusion matrices for each dataset, we
selected the parameter set with the highest accuracy for the next and final step of the UAV
failure detection system, where the LED subsystem uses three LEDs—blue LED, yellow
LED, and red LED (see Figure 8).

(b)

Figure 8. LED Subsystem with (a) Blue LED, (b) Yellow LED, and (c) Red LED.

The LED subsystem serves as a visual representation of the k-means clustering algo-
rithm and establishes feasibility for the failure detection system. We wrote a different code
in Arduino IDE for displaying the number of times each LED turns on (see Appendix A for
the code). Boundary conditions specify lines that separate the three health state regions
from the QFDC plot. We used the blue, yellow, and red LEDs for detecting the normal
state, faulty state, and failure state, respectively. We conducted nine flights for one minute
each, and took 100 samples for the three propeller cases with three trials each, yielding nine
flights. Accuracies for the LED subsystem were determined based on the constraints for
the LEDs.

5. Results

In this paper, the novel failure detection system uses an IMU sensor to measure in-
flight vibration of the Parrot ANAFI quadcopter, detect failure using the k-means clustering
algorithm, and reduce the number of crashes in faulty UAVs. After flying the Parrot ANAFI
drone for fifteen flights, we obtained vibration graphs from the IMU sensor readings. We
also obtained QFDC plots and confusion matrices using the k-means clustering algorithm
based on the chosen data and parameter sets. Finally, we obtained results for the LED
subsystem that tracks the number of LEDs that turn on.

5.1. Vibration Graphs

Figure 9 shows the vibration graphs for a flight set that contain readings for acceler-
ation and gyro in the x-, y-, and z-directions. We used the GY-521 sensor for measuring
vibration data, and read these values in the Arduino IDE software. The independent vari-
able is timestep in minutes, and the dependent variables are the six measured parameters
with units in least significant bit (LSB). Each graph compares the vibration data for different
propeller fault configurations—healthy (blue), 1SFP (yellow), and 2SFP (red). Note that
we only show the vibration graphs for flight set S1, as all other flight sets (52 to S5) show
similar trends.
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Figure 9. Measured Flight S1 Vibration Data for Parameter Sets (a) aX, (b) aY, (c) aZ, (d) gX, (e) gY,
and (f) gZ.

5.2. QFDC Plots

In Figure 10, we show the QFDC plots with three clusters (normal state, faulty state,
and failure state) for the selected parameter sets from Table 2. Each dataset contained
750 data points, written as (x, ..., X, ). We implemented the k-means clustering algorithm
in MATLAB with k = 3 and n = 750, which allocated each data point into one of the three
clusters. In Table 4, 3 x 3 confusion matrices for each QFDC plot compare the health states
for each data point between the actual label and the clustering label. We obtain both QFDC
plots and confusion matrices for n = 1, 2, and 3 dimensions, and we obtain only confusion
matrices for n = 4, 5, and 6 dimensions.
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Figure 10. QFDC Plot for (a) aY, (b) aZ, (c) gY-aY, (d) gZ-aZ, (e) gX-gZ-aX, and (f) gY-gZ-aZ.
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Table 4. Confusion Matrices for (a) aY, (b) aZ, (c) gY-aY, (d) gZ-aZ, (e) gX-gZ-aX, (f) gY-gZ-aZ,
(g) gY-gZ-aY-aZ, (h) gX-gY-gZ-aY-aZ, and (i) gX-gY-gZ-aX-aY-aZ.

Clustering Prediction Failure Faulty Normal Clustering Prediction Failure Faulty Normal
Actual Label State State State Actual Label State State State
Failure Failure
State 83 124 43 State 141 109 0
Faulty Faulty
State 53 120 77 State 53 197 0
Normal Normal
State 1 58 191 State 0 12 238
(a (b)
Clustering Prediction Failure Faulty Normal Clustering Prediction Failure Faulty Normal
Actual Label State State State Actual Label State State State
Failure Failure
State 170 80 0 State 231 19 0
Faulty Faulty
State 41 174 35 State 16 217 17
Normal Normal
State 0 22 228 State 0 7 243
(c) (d)
Clustering Prediction Failure Faulty Normal Clustering Prediction Failure Faulty Normal
Actual Label State State State Actual Label State State State
Failure Failure
State 149 101 0 State 201 49 0
Faulty Faulty
State 49 129 72 State 37 171 42
Normal Normal
State 0 12 238 State 0 9 241
(e) ®
Clustering Prediction Failure Faulty Normal Clustering Prediction Failure Faulty Normal
Actual Label State State State Actual Label State State State
Failure Failure
State 172 78 0 State 180 70 0
Faulty Faulty
State 49 161 40 State 41 159 50
Normal Normal
State 0 3 247 State 0 11 239
(8) (h)
Clustering Prediction Failure Faulty Normal
Actual Label State State State
Failure
State 201 49 0
Faulty
State 37 171 42
Normal
State 0 9 241

Table 5 shows the performance metrics from Equations (5) to (8) for the nine
parameter sets.

5.3. LED Subsystem

Since the parameter set gZ-aZ has the highest accuracy of 92.1% (see Table 5), we chose
this parameter set to move forward with decision-making, the last step of the UAV failure
detection system, using the LED subsystem. Three LEDs (blue, yellow, and red) turn on one
at a time based on specified constraints. We set up boundary conditions with equations for
two linear lines that separate the three different cluster regions: normal state region, faulty
state region, and failure state region. Their equations are determined in slope-intercept
form by using two points on a line that separate two regions, and we calculate their slope.
Figure 11 shows the chosen QFDC plot with indicated regions and their linear equations.
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Table 5. Performance Metrics for Parameter Sets.

n Parameter Set Recall Precision Accuracy F-Score
1 aY 0.606 0.332 0.525 0.429
1 aZ 0.727 0.564 0.768 0.635
2 gY-aY 0.806 0.680 0.763 0.738
2 gZ-aZ 0.935 0.924 0.921 0.930
3 gX-gZ-aX 0.753 0.596 0.688 0.665
3 gY-gZ-aZ 0.844 0.804 0.817 0.824
4 gY-gZ-aY-aZ 0.778 0.688 0.773 0.730
5 gX-gY-gZ-aY-aZ 0.814 0.720 0.771 0.764
6 gX-gY-gZ-aX-aY-aZ 0.766 0.680 0.757 0.720
10* Quadcopter Failure D Clusters for gZ-aZ

261

24

Accelerometer Magnitude (aZ) (LSB)

08 . !
0 2000 4000 6000

L
8000 10000

Gyroscope Magnitude (gZ) (LSB)

Figure 11. Chosen QFDC Plot with Boundary Conditions.

®  Normal State
Faulty State
| ® Failure State

12000

14000

The blue, yellow, and red LEDs correspond to normal state, faulty state, and failure
state, respectively. We conducted nine more flights, where the Parrot drone flew based
on the three propeller cases with three trials each. Flight F1 utilized the healthy propeller
case, Flight F2 utilized the 1SFP case, and Flight F3 utilized the 2SFP case. The drone flew
around for one minute, and we took 100 samples to track the number of LEDs that turned
on during the flight (see Table 6). We calculated their accuracies by taking the quotient
of the counted LED (bolded number) and the number of samples (100) (see Table 7). A
video of the conducted flight experiments with LEDs is available in the Supplementary

Materials section.

Table 6. Tracking Three LEDs from Nine Flights.

Flight Blue LED Yellow LED Red LED
Trial 1 95 5 0
F1 Trial 2 94 6 0
Trial 3 94 6 0
Trial 1 2 94 4
F2 Trial 2 4 92 4
Trial 3 3 93 4
Trial 1 0 8 92
F3 Trial 2 0 7 89
Trial 3 0 11 93
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Table 7. LED Subsystem Accuracies.

Flight Trial 1 Trial 2 Trial 3
F1 0.95 0.94 0.94
F2 0.94 0.92 0.93
F3 0.92 0.89 0.93

5.4. Discussion of Results

Figures 9 and 10 showed vibration graphs, QFDC plots, and confusion matrices for
the UAV failure detection system that utilized the k-means clustering algorithm as a part
of the failure detection system to reduce the number of fatal UAV crashes. Graphs for
the six parameters (aX, aY, aZ, gX, gY, and gZ) each compared the vibration of the Parrot
quadcopter as a function of timestep. The measured vibration curves for the 2SFP case (red)
have higher values than both the 1SFP (yellow) and healthy (blue) propeller cases. When
the propeller blades exhibited damage, additional vibration signals resulted in these higher
magnitudes and affected the aerodynamics of the quadcopter. The rotor(s) generated
fluctuating thrust for the faulty propellers, which resulted in higher vibrations on the
structure. In other words, faulty propellers distorted the quadcopter dynamics as it affected
the thrust in the rotors, resulting in higher vibration. We considered different propeller fault
configurations in UAV failure detection for conducting experimental flights; simulations
were unnecessary because we could perform real flight experiments, thanks to the facility
at Southern Illinois University Carbondale.

Each QFDC plot contained 750 points from datasets of selected parameters for dimen-
sions between 1 and 6. Three health state clusters (normal state, faulty state, and failure
state) contained these data points after running the k-means clustering algorithm. For n =1,
the QFDC plots were one-dimensional and arranged each data point in a horizontal line.
For n = 2, x1 represented a gyroscope parameter, while x, represented an accelerometer
parameter. The QFDC plots showed these data points arranged in a two-dimensional plane.
For n = 3, x1 and x; represented the two gyroscope parameters, while x3 represented an
accelerometer parameter. These plots showed data points scattered in a three-dimensional
space. By looking at these QFDC plots, failure most likely occurred when each plot attained
higher values for each chosen parameter. Each confusion matrix compared the health states
for each data point between the actual label and the clustering label. For n = 4, 5, and 6,
though we provided no QFDC plot for higher dimensions, their confusion matrices pro-
vided sufficient information for calculating performance metrics. The top three parameter
sets are gZ-aZ, gY-gZ-aZ, and gY-gZ-aY-aZ, with accuracies of 92.1%, 81.7%, and 77.3%,
respectively (Table 5).

In this study, we showed the acceleration and gyro parameter sets for each dimension,
although other combinations are possible. In Table 5, the parameter sets that had parameter
aZ attained higher accuracies. We considered gravity for measuring acceleration in the
z-direction (aZ). Since vibration signals had no negative values, this parameter stands out
among the other five that would make accuracies higher for these chosen parameter sets.
As n: 12, the accuracy increases, but as n: 2—6, the accuracy decreases. One possible
reason for n = 2 having the best performance metrics is the ability for the algorithm to
better minimize the distance between data points and the centroid in MATLAB for this
dimension. As shown in the confusion matrices in Table 4, maximizing the true positive
(FF) and true negative (AA and NN) cells, and minimizing all other cells, would guarantee
the highest accuracy possible for the UAV failure detection system. The parameter sets
gY-aY and gZ-aZ had accuracies of 76.3% and 92.1%, respectively, for n = 2. Information for
failure detection may become masked by unnecessary or redundant information for higher
dimensions. Our investigations show that the parameter set gZ-aZ results in the highest
failure detection accuracy. Hence, we selected that parameter set for the flight experiments.

We set boundary conditions in Figure 11 for the LED subsystem that confirmed the
effectiveness of the UAV failure detection system. After conducting nine additional flight
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experiments, the accuracies ranged between 89% and 95%, (Table 7), and each of the nine
accuracies were within the 3.5% difference of the gZ-aZ plot (92.1%). For Flight F1, the
blue and yellow LEDs turned on, but not the red LED. As expected, no signs of failure
occurred when the quadcopter blades were in good condition. For Flight F2, all three LEDs
turned on, and possible failure occurred when the red LED blinked on at some point during
the flight. In addition, the yellow and red LEDs turned on for Flight F3, which showed
existing faults or failures from the damaged quadcopter blades. The written Arduino code
correctly identified these health states. Our system detected failure in 0.6 s as we used
only one sensor to measure the necessary parameters for the k-means clustering algorithm.
By attaining these high accuracies for both the QFDC plot and the LED subsystem, the
proposed UAV failure detection system shows its feasibility and effectiveness in detecting
failures. We can use the outputs obtained from this failure detection system in the next step
of the safety framework, which is finding a safe landing zone.

6. Conclusions

Safety concerns of flying UAVs in urban environments is addressed with a three-
step safety framework that consists of (1) detecting failures, (2) finding an uncluttered
emergency landing zone, and (3) navigating the UAV to the landing zone found in step 2.
Here, to address the first step, we proposed a novel failure detection system for a UAV
that detects propeller failures to reduce the risk of crashes and show its effectiveness in
experimental flights. We built a hardware system consisting of an IMU sensor and a
Bluetooth module, and connected them to the Arduino Uno for measuring the vibration
signals of the quadcopter during the flights. We flew the quadcopter for three different
propeller configurations based on the number of faulty propellers for a total of fifteen
flights. Before reading the data, we measured the acceleration and gyro data in three
directions with an IMU sensor and wirelessly sent the parameter data to Arduino IDE
using Bluetooth. We extracted the data by selecting parameters and values for obtaining
vibration graphs. The k-means clustering algorithm was successful in allocating data points
in three clusters, representing different health states for each QFDC plot with different
parameter combinations. We also used the LED subsystem with three LEDs as a visual
representation of the algorithm for validating the failure detection system. We set boundary
conditions from the corresponding QFDC plot and tracked each LED based on the written
code during flight. After applying the k-means clustering algorithm, we discovered the
best selection of parameters with high accuracy. We detected failure in 0.6 s, thus making
the use of additional sensors unnecessary. By fulfilling the five steps of this system and
using the k-means clustering algorithm, we achieved promising results for detecting UAV
failure. Future scope of this work includes integrating this algorithm with the other two
steps of the safety framework, where the researchers published the second step in ref. [8].

Supplementary Materials: The following supporting information can be downloaded at: youtube.
com/watch?v=jMxcHfUOI-s, The video shows flight experiments with LEDs to confirm the feasibility
of using the proposed method in detecting failures in UAVs.
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Appendix A

Developed code for LED Subsystem
#include “Wire.h”

const int MPU_ADDR = 0x68;

intl6_t accelerometer_x, accelerometer_y, accelerometer_z;
intl6_t gyro_x, gyro_y, gyro_z;

char tmp_str[7];

char* convert_int16_to_str(int16_t i)

{
sprint(tmp_str, “%6d”, i);
return tmp_str;

}

inti;

int LED1 =11; //Blue LED from Pin 11 for Normal Condition
int LED2 = 12; / /Yellow LED from Pin 12 for Faulty Condition
int LED3 = 13; //Red LED from Pin 13 for Failure Condition

int BlueLEDon = 0;
int YellowLEDon = 0;
int RedLEDon = 0;

void setup()
{
Serial.begin(9600);

Wire.begin();
Wire beginTransmission(MPU_ADDR);
Wire.write(0x6B);
Wire.write(0);
Wire.end Transmission(true);

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);

for(i=1;i<101;i++) / /Read 100 lines once for each flight
{
Wire.beginTransmission(MPU_ADDR);
Wire.write(0x3B);
Wire.endTransmission(false);
Wire.requestFrom(MPU_ADDR, 7*2, true);
accelerometer_x = Wire.read()<<8 | Wire.read();
accelerometer_y = Wire.read()<<8 | Wire.read();
accelerometer_z = Wire.read()<<8 | Wire.read();
gyro_x = Wire.read()<<8 | Wire.read();
gyro_y = Wire.read()<<8 | Wire.read();
gyro_z = Wire.read()<<8 | Wire.read();
delay(600);

Serial.print(i);
Serial.print(“ | aZ = *); Serial.print(convert_int16_to_str(accelerometer_z));

Serial.print(“ | gZ = “); Serial.print(convert_int16_to_str(gyro_z));

if(abs(accelerometer_z) < - -0.74*abs(gyro_z) + 17435) //Boundary Condition
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#1

digitalWrite(LED1, HIGH); //Turn Blue LED on
digitalWrite(LED2, LOW); //Turn Yellow LED off
digitalWrite(LED3, LOW); //Turn Red LED off
BlueLEDon = BlueLEDon + 1;
}
else
{
if(abs(accelerometer_z) < —4.35%abs(gyro_z) + 40972) / /Boundary Condition #2
{
digitalWrite(LED1, LOW); //Turn Blue LED off
digitalWrite(LED2, HIGH);  //Turn Yellow LED on
digitalWrite(LED3, LOW); / /Turn Blue LED off
YellowLEDon = YellowLEDon + 1;
}
else / /Boundary Condition #3
{
digitalWrite(LED1, LOW); //Turn Blue LED off
digitalWrite(LED2, LOW); //Turn Yellow LED off
digitalWrite(LED3, LOW); //Turn Red LED on
RedLEDon = RedLEDon + 1;

}

Serial.print(“ | Blue LED: “); Serial.print(BlueLEDon);
Serial.print(“ | Yellow LED: “); Serial.print(YellowLEDon);
Serial.print(“ | Red LED: “); Serial.print(RedLEDon);
Serial.printIn();
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