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Abstract— This work proposes a distributed and decen-
tralized observer for position estimation (localization) of a
moving target being tracked by multiple mobile sensors. The
possibly time-varying set of sensors that have the target in
their field of view, is used to create an energy-like quantity
that depends on errors in the estimated relative positions and
relative velocities of the target as measured by the mobile
sensors. The relative velocities need not be measured directly,
and can be obtained by filtering the observed relative positions.
Each sensor then implements a local version of this distributed
observer, and shares relative position information with the other
sensors that are tracking the target. The observer is in the
form of a variational estimator that is obtained by taking an
action functional constructed from the energy-like quantity and
dissipating this energy. As a result, the observer is shown to
be asymptotically stable. Numerical simulations confirm this
stability property and indicate robustness of the distributed
observer to bounded measurement errors.

1. INTRODUCTION

This work considers the problem of a set of mobile
cooperative sensors that autonomously work together to
locate and track a mobile target. Applications are to networks
of unmanned vehicles tasked to locate and track targets:
such networks could be homogenous (all vehicles of the
same type) or heterogenous (networks of different types of
unmanned vehicles possibly spanning different domains like
ground, maritime, air and space). This requires autonomous
state estimation of position and velocity states of the target
by fusing information gathered by the network of sensors.

The proposed distributed observer scheme can enhance the
autonomy and reliability of such autonomous mobile sensor
networks operating in uncertain environments where internal
parameters (like mass and inertia properties of sensors) and
environmental factors (like disturbance forces and torques).
It also does not require knowledge of the internal dynamics
of the mobile sensors or the mobile target being tracked.
In practice, the dynamics of such mobile sensors (e.g.,
unmanned aerial vehicles or UAVs) may not be perfectly
known, especially when the vehicle is under the action of
poorly known forces and moments due to wind, weather, etc.
In such situations, deterministic estimation approaches like
deterministic observers turn out to be robust to disturbances
acting on the system or system model uncertainties [1], [2],
[3].

In recent years, we have developed and tested the concept
of variational estimators, which is based on applying the
framework of variational mechanics to state estimation of
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rigid body systems [4], [5], [6]. This approach was also ap-
plied to relative state estimation between rigid body systems
(modeling unmanned vehicles) in [7]. Prior work that relates
to the variational estimation schemes are the “minimum
energy” or “maximum likelihood” recursive filtering schemes
first proposed in [8]. The minimum energy filtering schemes
were more recently extended and applied to rigid body state
estimation in [9], [10], [11]. However, Mortensen’s method
of minimum energy filtering, although robust to uncertainties
in measurements and dynamics, has a significant drawback. It
can only be solved in an approximate sense as the nonlinear
minimum-energy estimation problem requires solving the
Hamilton-Jacobi-Bellman (HJB) equations for the nonlinear
maximum likelihood estimation problem. As the HJB equa-
tions cannot be solved exactly, they are solved in an approx-
imate sense usually up to the second-order; in other words,
they are at best “near optimal”. Moreover, as was shown in
our prior work, they are not guaranteed to be nonlinearly
stable [12]. The lack of stability is an even more signifi-
cant drawback of minimum-energy filtering schemes when
applied to systems with uncertainties in internal dynamics
and disturbances. This provides the motivation behind the
variational estimation approach, which guarantees nonlinear
stability by dissipating a mechanical energy-like quantity
created from the state estimation errors. This dissipation in
the energy is achieved by introducing a mechanical damping-
like term that is linear in the velocity estimation errors and
applying the Lagrange-d’Alembert principle from variational
mechanics to the total energy [13], [14], [15].

Here we apply the variational estimation approach to
the network of mobile sensors tracking a mobile target,
assuming that one or more of the sensors are in direct line-
of-sight of the target. The positions and velocities of the
sensors are assumed to be known across the network. For
ease of analysis, the communications model is based on
a simple model where each sensor can communicate with
other sensors located within a sphere of known radius. As
the network itself is mobile, this means that the network
topology is not static and so the controls and communications
will have to be coupled so that the network graph remains
strongly connected for this distributed variational estimation
framework to work. However, we do not deal with the
controls-communications coupling in this work, and assume
that strong connectivity of the network is maintained so that
the distributed observer is able to estimate the position and
velocity of the target.

The remainder of this paper is organized as follows.
Section 2 lays down the basic assumptions and theoretical



framework for the distributed observer design. Section 3
gives the main result of this paper: the variational estimator
for the position and velocity of the target as a distributed ob-
server. This is obtained by applying the Lagrange-d’Alembert
principle from variational mechanics to a Lagrangian created
from estimation errors that combine measurements from all
sensors directly observing the target. In section 4, we develop
a discrete-time version of the variational estimator as a
distributed observer, and then use this discrete-time version
for numerical simulations on a computer. The discrete-
time version is obtained by applying the discrete Lagrange-
d’Alembert principle [16] to the same Lagrangian used to
design the continuous-time variational estimator in section
3. Finally, section 5 provides a summary of the main result
and contributions of this paper and possible related future
developments.

2. FRAMEWORK FOR DISTRIBUTED OBSERVER DESIGN

Consider a mobile target being tracked by a network
of mobile sensors in three dimensional Euclidean space
R3. To track the mobile target, the target’s states need to
be estimated in real time by the mobile sensor network.
We make the following assumptions about the network of
sensors: (1) each sensor has knowledge of its own position
and velocity in an inertial coordinate frame; (2) each sensor
can communicate back and forth with other sensors that are
located within a sphere of known radius centered at this
sensor; (3) one or more sensors are in direct line-of-sight of
the target; and (4) the sensors are controlled such that there
is a communications path between any two sensors in the
network. The second and fourth assumptions imply that every
sensor in the network is within communications range of at
least two other sensors, which makes the network graph 2-
edge-connected and therefore strongly connected according
to Robbins’ theorem [17]. For the target tracking objective,
a distributed observer is designed for state estimation of the
observed target by the networked multi-sensor system.

LetN = {1, . . . , n} denote the index set of mobile sensors
in the multi-sensor system, and i ∈ N the index number
used to label a particular sensor. A concept diagram of this
multi-sensor target tracking problem is given in Fig. 1. Let
(bi, vi) ∈ R6 denote states of the ith sensor, where bi ∈ R3

denotes its inertial position vector and vi ∈ R3 denotes its
inertial velocity vector. Let (b0, v0) ∈ R6 denote states of the
target object being tracked by the system. The instantaneous
relative position between target and ith sensor and between
ith and jth sensors (i, j ∈ N ), are denoted

b0i = bi − b0 and bij = bj − bi. (1)

Likewise, the instantaneous relative velocity between target
and ith sensor and between ith and jth sensors (i, j ∈ N ),
are denoted

v0i = vi − v0 = ḃ0i and vij = vj − vi = ḃij . (2)

Denote the larger index set of objects (including sensors
and target) by N̄ = {0}∪N , and let µ and ν denote indices

Fig. 1. Inertial relative motion of a target as observed and tracked by a
distributed network of mobile sensors.

of a pair of objects, where µ, ν ∈ N̄ . Let bµ, bν ∈ R3

denote the positions of these two objects; therefore bµν is
their relative position as defined by eq. (1). Thus bµν is the
(instantaneous) relative position of object µ as observed by
object ν. The relative velocity between these two objects is
vµν = ḃµν . The relative motion between the sensor i and the
target given by (b0i, v0i) can be used for control and tasking
of the sensor i, which do not consider here. As estimating
the motion of the target is the problem we are considering in
this article, we next give the measurement model for these
relative motion states.

The quantities b0i and v0i = ḃ0i are estimated in contin-
uous time from the observed values, which may have errors
due to measurement noise that needs to be filtered. Assuming
that these errors can be modeled as additive errors, we denote
the corresponding measured quantities as:

b0im = b0i + χ0i and v0im = v0i + υ0i, (3)

where χ0i, υ0i ∈ R3 are the additive measurement noise vec-
tors. The following section gives the deterministic estimator
design for these quantities without any assumption on the
statistical distribution of these errors.

3. VARIATIONAL ESTIMATOR FOR POSITION AND
VELOCITY OF TARGET

Let N t
0 ⊂ N denote the subset of sensors that observe the

target at time t; note that this is a time-varying subset of N .
Let i ∈ N t

0 and let

b̂0i ∈ R3 and v̂0i ∈ R3

denote the estimates of b0i and v0i respectively, as obtained
from the measurements expressed in (3). As we are interested
in directly estimating the absolute position and velocity of
the target, we consider the estimates

b̂0 ∈ R3 and v̂0 ∈ R3

respectively, with measurements from all sensors i ∈ N t
0 .

Therefore the estimation errors in these quantities are:

x0 = b̂0 − b0, u0 = v̂0 − v0. (4)



The variational estimator design described here is a deter-
ministic observer that gives a continuous time observer law
for updating the estimates (̂b0, v̂0) obtained from energy-like
quantities defined from these estimation errors.

A. Observer Form of Variational Estimator for Translational
Motion of Target

Let λi for i ∈ N t
0 be positive scalar observer gains that

satisfy
λi > 0 s.t.

∑
i∈N t

0

λi = 1. (5)

The λi can be considered as weight factors that place differ-
ent weights on each of the sensors observing the target based
upon knowledge of the accuracy of their measurements. We
re-define the state estimation errors in (4) based on directly
measured quantities:

x0 = b̂0 −
∑
i∈N t

0

λi(b
i − b0i), (6)

u0 = v̂0 −
∑
i∈N t

0

λi(v
i − v0i), (7)

which give the target’s position estimate and target’s velocity
estimate errors, respectively. By imposing the condition that
˙̂
b
0

= v̂0, we get
ẋ0 = u0. (8)

The energy in these state estimation errors is dissipated by
our observer design.

Define a potential energy-like term from the position
estimation error given by (6), as follows:

U(x0) :=
1

2
(x0)TKx0 where K = KT > 0. (9)

This potential-like term is also a measure of the energy in
the target’s position estimation error based on all sensors
i ∈ N t

0 that measure the target. A similar kinetic energy-like
term can be defined from the velocity estimation error (7),
as follows:

T (u0) :=
1

2
(u0)TMu0 where M = MT > 0. (10)

The positive definite matrices K,M ∈ R3×3 are observer
gain matrices that are design parameters. This kinetic energy-
like term is a measure of the energy in the target’s velocity
estimation error from measurements by the sensors i ∈ N t

0 .
Now consider the following Lagrangian constructed from
these energy terms in eqs. (9)-(10):

L(x0, u0) := T (u0)− U(x0)

=
1

2
(u0)TMu0 − 1

2
(x0)TKx0.

(11)

The observer design that follows is based on this Lagrangian
function (11) and a dissipative term that dissipates the total
mechanical energy-like quantity given by the sum of T (u0)
and U(x0).

Proposition 3.1: Let L(x0, u0) be the Lagrangian defined
by (11) and let C ∈ R3×3 be a positive definite matrix. Then

the variational estimator for the translational motion states
of the target, obtained by applying the Lagrange-d’Alembert
principle to this Lagrangian with the dissipation term FD =
−Cu0, is given by

˙̂
b
0

= v̂0,

v̂0 =
∑
i∈N t

0

λi(v
i − v0i) + u0,

Mu̇0 = −Cu0 −Kx0,

(12)

where x0 is given by (6) and x0 and u0 are related as in (8).
Proof: The first of eqs. (12) is what we set as the

relation between the target’s position and velocity estimates.
The second of eqs. (12) is a re-statement of (7). The third
equation is obtained by applying the Lagrange-d’Alembert
principle to the Lagrangian (11) with the forcing term
(dissipation) FD. This leads to the following Euler-Lagrange
equation with forcing:

d

dt

∂L(x0, u0)

∂u0
− ∂L(x0, u0)

∂x0
= FD. (13)

Now substituting the form of the Lagrangian (11) and the
dissipation term FD = −Cu0 = −Cẋ0, we get the third of
eqs. (12), which completes this proof.

B. Stability of Variational Estimator for Translational Mo-
tion of Target

The observer given by Proposition 3.1 is stable as a
consequence of the dissipation term introduced. This is
shown in the following result.

Theorem 3.2: The variational estimation scheme given
by Proposition 3.1 is asymptotically stable and the state
estimation errors (x0, u0) ∈ R6 asymptotically converge to
zero.

Proof: The stability of this observer follows from using
the total energy-like function:

E(x0, u0) := T (u0) + U(x0)

=
1

2
(u0)TMu0 +

1

2
(x0)TKx0.

(14)

as a Lyapunov function, and taking its time derivative.
After substituting the observer form given by (12), the time
derivative evaluates to:

Ė(x0, u0) = −(u0)TCu0 ≤ 0. (15)

The above time derivative is negative semi-definite in the
“error states” (x0, u0), from which we conclude stability.
Now applying LaSalle’s invariance principle in the form
given by Theorem 8.4 of [18], we see that the largest
invariant subset of the set where Ė(x0, u0) = 0 is the
singleton set (x0, u0) = (0, 0). Therefore, the error states
(x0, u0) converge to zero asymptotically with time.

Note that Theorem 3.2 states that the observer form given
by Proposition 3.1 is asymptotically stable in the absence
of measurement errors in b0i and v0i. We assume that the
positions and velocities of the sensors i ∈ N t

0 are perfectly
known or estimated onboard these sensors. In the presence of



measurement errors in the relative position and relative ve-
locity of the target as given by (3), the effect of the variational
estimator will be to integrate the noise in the relative position
measurement and attenuate the error in the relative velocity
measurements, as given by eqs. (12). However, the strong
stability property of this estimator as stated in Theorem 3.2
makes it robust to bounded measurement noise.

In the presence of measurement noise, the variational
estimator for the target’s position and velocity is given by
the following set of equations:

˙̂
b
0

= v̂0,

v̂0 =
∑
i∈N t

0

λi(v
i − v0im) + u0,

Mu̇0 = −Cu0 −Kx0,

(16)

The above implementation of the variational estimator can
be initialized as follows:

x0(t0) = b̂0(t0)−
∑
i∈N t0

0

λi(b
i − b0im)(t0),

u0(t0) = v̂0(t0)−
∑
i∈N t0

0

λi(v
i − v0im)(t0).

(17)

The initial values in eqs. (17) are used in the last of eqs.
(16) to update u0 at later times, and the updated u0 is used
in the first two of eqs. (16) to update b̂0 and v̂0.

4. DISCRETE VARIATIONAL ESTIMATOR AND
NUMERICAL SIMULATIONS

The continuous-time variational estimation scheme given
in section 3 is not best suited for implementation on a
computer, unlike discrete-time estimation schemes. For use
in both numerical simulations as well as onboard com-
puter implementation in hardware, a discrete-time estimation
scheme is advantageous. Here we obtain a discrete-time
version of the variational estimation scheme outlined in the
previous section, and use it for numerical simulations on a
computer to verify its performance.

A. Discrete Variational Estimator for Translational Motion
of Target

Consider the Lagrangian given by (11) evaluated now in
discrete time as follows:

L(x0k, u
0
k) := Lk = T (u0k)− U(x0k)

=
1

2
(u0k)TMu0k −

1

2
(x0k)TKx0k,

(18)

where u0k and x0k are related by the discrete kinematics:

u0k =
x0k+1 − x0k

h
. (19)

Let N k
0 denote the set of sensors observing the target at time

tk. The following statement gives a discrete-time variational
estimator, as a counterpart to the continuous-time variational
estimator of Proposition 3.1, for the target tracking problem
being considered here.

Proposition 4.1: Let L(x0k, u
0
k) be the discrete Lagrangian

defined by (11), h be the discrete sampling period, and let
C ∈ R3×3 be a positive definite matrix. Then the discrete
variational estimator for the translational motion states of
the target, obtained by applying the discrete Lagrange-
d’Alembert principle to this Lagrangian with the dissipation
term FDk

= −Cu0k, is given by

b̂0k+1 = b̂0k + hv̂0k,

v̂0k =
∑
i∈Nk

0

λi(v
i
k − v0ik ) + u0k,

(M + hC)u0k+1 = Mu0k − hKx0k+1,

(20)

where x0k and u0k are related as in (19).
Proof: The first of eqs. (20) is the discrete kinematics

equation relating the estimates b̂0k and v̂0k, and the second
equation is a consequence of eq. (7). The discrete version of
the Lagrange-d’Alembert principle was obtained in seminal
work on discrete geometric mechanics in the late 1990’s
and early 2000’s [16], [19]. As a first step in obtaining
the discrete Lagrange-d’Alembert equations for a mechanical
system with non-conservative forcing, a discrete action sum
is created from the discrete Lagrangian as follows:

Sd(L(x0k, u
0
k)) =

N∑
k=0

hL(x0k, u
0
k) =

N∑
k=0

hLk. (21)

The discrete Lagrange-d’Alembert principle states that with a
“non-conservative forcing” FDk

applied to the system given
by the state estimation errors, the following is satisfied:

δSd(L(x0k, u
0
k)) + h

N−1∑
k=0

FT
Dk
δx0k = 0, (22)

where δqk denotes the first admissible variation of the
quantity qk with fixed endpoints, i.e., δq0 = δqN = 0 [15],
[20]. Applying (22) to the discrete action sum (21) with
the dissipative forcing term FDk

= −Cu0k and the discrete
kinematics (19), we get

N−1∑
k=0

[
(u0k)TM(δx0k+1 − δx0k)− h(x0k)TKδx0k

− h(u0k)TCδx0k

]
= 0.

Collecting terms linearly dependent upon δx0k which is an
arbitrary admissible variation satisfying δx00 = δx0N = 0, we
get[

(u0k−1)TM − (u0k)TM − h(x0k)TK − h(u0k)TC
]
δx0k

= 0 for k = 1, . . . , N − 1. (23)

Finally, noting that the δxk are arbitrary admissible vari-
ations, we conclude that the term in square brackets [. . .]
vanishes. This gives rise to the last of eqs. (20).

Note that this discrete time variational estimator retains
the property of dissipation of the total energy function
(evaluated in discrete time), just like its continuous-time
counterpart [12]. This leads to discrete-time stability of this
discrete variational estimator.



B. Numerical Simulation Results

The discrete variational estimator given by Proposition 4.1
is numerically simulated here in the following form:

b̂0k+1 = b̂0k + hv̂0k,

v̂0k =
∑
i∈Nk

0

λi(v
i
k − v0ik,m) + u0k,

(M + hC)u0k+1 = Mu0k − hKx0k+1,

(24)

where v0ik,m is the measured value of v0ik . Note that x0k+1

is obtained from eq. (6) evaluated at time tk+1, using the
value of b̂0k+1 given by the first of eqs. (24). This value of
x0k+1 is then substituted in the last of eqs. (24) to get the
update of the velocity estimation error, u0k+1. By utilizing
MATLAB software, following results were generated. First

Fig. 2. Actual position b0 of the target
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Fig. 3. Components of the position b0 of the target

we show how the target is moving; Fig. 2 shows its trajectory
in a three dimensional space, Fig. 3 shows its position
components and Fig. 4 shows components of the velocity
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Fig. 4. Components of the velocity v0 of the target

of the target. We assume a scenario where three sensors can
observe the target for 7.5 seconds and suddenly one of the
sensors can not detect the target anymore at t = 7.5s, hence,
the estimation should continue with only two sensors. We
show the results of this scenario for two cases; first when
there is no measurement noise in sensors and second, when
the sensors have random noisy measurements. Comparison
of the results show the robustness of the proposed algorithm
when there is measurement noise.
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Fig. 5. Position Estimation Errors when there is no noise

Figures 5 and 6 show the behavior of position and velocity
estimation errors, respectively, and how they converge to zero
when there is no noise. Even when one of the sensors does
not work at t = 7.5s and onwards, the algorithm enforces
asymptotic convergence of the errors to zero.

Figures 7 and 8 show the position estimation error and
velocity estimation error over time, when there is sensor
measurement noise. These two figures demonstrate how
robust the proposed estimation scheme is to high frequency
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Fig. 6. Velocity Estimation Errors when there is no noise
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Fig. 7. Position Estimation Errors in presence of noise

measurement noise. In addition, comparing figure 7 with
figure 5 and figure 8 with figure 6, we can observe how well
the estimator works even in presence of sensor measurement
noise.

5. CONCLUSION

In this article, we obtained a distributed observer design,
in the form of a variational estimator, for estimating the
translational motion states (position and velocity vectors)
of a mobile target observed by a subset of sensors in a
mobile sensor network. The mobile sensors are assumed
to maintain a strongly connected communications network
and communicate information about their states and mea-
surements of target’s relative motion among themselves.
Measurements of the target by the sensors that directly
observe it, are used to design a distributed observer in the
form of a variational estimator. This distributed observer can
be then implemented in a decentralized manner on each
sensor. The variational estimator for the target’s position
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Fig. 8. Velocity Estimation Errors in presence of noise

and velocity vectors in three spatial dimensions is derived
using the Lagrange-d’Alembert principle from variational
mechanics, and shown (theoretically) to be asymptotically
stable. A discrete version of this variational estimator is also
obtained using the discrete Lagrange-d’Alembert principle,
for ease of numerical implementation. Numerical simulations
carried out using this discrete variational estimator confirm
its stability properties and its robustness to high-frequency
measurement noise.
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