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GUIDANCE AND TRACKING CONTROL FOR RIGID BODY
ATTITUDE USING TIME-VARYING ARTIFICIAL POTENTIALS

Abhijit Dongare; Amit K. Sanyal] Hossein Eslamiat:
and
Sasi Prabhakaran Viswanathan®

This paper presents a guidance and attitude tracking control scheme in continuous time for a
rigid body in SO(3), using time-varying artificial potentials. This novel idea leads to generation
of an attitude trajectory that passes through desired attitude waypoints and feedback tracking
of this trajectory. These waypoints can also be used for avoiding attitude or pointing direction
constraints so that safe attitude navigation is ensured. Artificial time-varying potential fields at
these waypoints that are attractive, are introduced. Bump functions of time, which are smooth
but not real analytic, are used to generate these potentials at the desired attitude waypoints. For
the terminal attitude, a different type of smooth function is used. The rigid body attitude in
these time-varying potential fields gets attracted towards the desired attitude waypoints during
certain time periods. This generates an attitude trajectory passing through these desired way-
points sequentially in time. A Lyapunov analysis is carried out to show stable attitude tracking
through the desired waypoints and ending at the terminal attitude, using these time-varying ar-
tificial potentials. Numerical simulations are carried out to test the performance of this attitude
guidance and tracking scheme.

INTRODUCTION

Guidance and control of rigid body is an essential problem for aerospace, underwater and ground
vehicles. This work proposes a novel scheme for attitude trajectory generation and tracking control.
The method involves guidance and trajectory tracking of rigid body attitude from a given initial
attitude to a given final (rest) attitude through a set of intermediate attitude waypoints. This scheme
is based on the use of time-varying artificial potential fields.

Trajectory generation is an essential problem for operations of an autonomous vehicle. It requires
complete information regarding the geometry of the rigid body, its surroundings, and its dynamics.
Path planning for collision avoidance is described in.! Artificial potentials have been used as a way
for collision avoidance.> Collision avoidance can be distributed among several levels of control
as described in® and* instead of just as a high level problem. This significantly helps to increase
the safety in real-time operations. Obstacles detected can be avoided by constructing repulsive
artificial potential fields around them, and destinations and waypoints are represented as attractive
potentials. The concept of artificial potentials has also been used in robot path planning.> The
artificial potential function can be designed to include information on the environment and the aim.
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Guidance for multiple robots can also be carried out using artificial potentials.® Artificial potentials
can be used for fast and efficient path planning by prioritizing robots accordingly.

Artificial potentials have also been applied in spacecraft formation control.” A scheme for au-
tonomous rendezvous in orbit with a target can be designed using an artificial potential function.®
Spacecraft collision avoidance during a rendezvous maneuver using an artificial potential for guid-
ance and sliding mode control for tracking is another application.” Artificial potential using relative
orbital elements to achieve a relative orbit was treated in.'® Another application of artificial po-
tential is for in orbit servicing.!! This concept uses a simple attractive and a dynamic repulsive
artificial potential, which prioritizes obstacles to avoid by assigning weight factors. Applications
to formation control for multiple unmanned aerial vehicles are discussed in'? and.!> The former
paper describes formation tracking control in a constrained space. It uses the formation potential
field which is a modified artificial potential field that maintains the formation along with collision
avoidance among the vehicles and also the surroundings. The latter paper describes a formation
potential field for formation control and collision avoidance in dynamic environments. Another ap-
proach involves use of logarithmic barrier potentials in terms of quaternions, for spacecraft attitude
control in order to avoid constraints and remain in certain zones.'*

This work uses the framework of geometric mechanics along with time-varying artificial poten-
tial fields to guide a rigid body through desired attitude waypoints and settle into a desired final rest
attitude. The concepts of “virtual leaders” along with artificial potentials on the Lie group of rigid
body motions in three dimensional Euclidean space is used to control multiple autonomous vehi-
cles.> Spacecraft formation control in the framework of geometric mechanics can be done using
artificial potentials and a virtual leader.!® Artificial potentials is also used for collision avoidance in
Riemannian manifolds.!” The work in'® involves geometric control of attitude using both attractive
and repulsive potentials for guidance. The desired attitude is obtained asymptotically while avoid-
ing undesirable orientations. The novelty of this work is that it uses time-varying artificial potentials
for guidance through desired waypoints on the Lie group SO(3) of rigid body attitude. Further, the
time-varying artificial potentials used here are defined only on closed (compact) intervals of time,
designed to coincide with time intervals at which the desired waypoints should be reached.

The outline of this manuscript has four main sections. The first Section describes attitude dynam-
ics of a rigid body on SO(3). The second Section describes the design of attractive time-varying
artificial potential fields for reaching attitude waypoints, and repulsive potentials to avoid undesir-
able zones. It also gives a (continuous time) control law for attitude tracking, along with a Lyapunov
analysis to show its stability. The fourth Section involves numerical simulation results using a Lie
group variational integrator scheme that was used in.!® The final section provides concluding re-
marks and explores possible future research directions.

PROBLEM FORMULATION
Coordinate Frame Definition

The configuration space of rigid body attitude motion is the Lie group SO(3). The attitude is
described by a rotation matrix relating a body-fixed coordinate frame to an inertial coordinate frame.
We consider a coordinate frame 5 fixed to the body and another coordinate frame Z that is fixed
in space and takes the role of an inertial coordinate frame. Let R € SO(3) denote the orientation
(attitude) of the body, defined as the rotation matrix from frame B to frame 7.



Rigid Body Attitude Dynamics with Control Input Torque

The model for attitude dynamics of a rigid body acting under a control torque is outlined here.
The attitude of the rigid body is given by the rotation matrix R € SO(3) from body-frame coordinate
frame to an inertial frame. The angular velocity of the rigid body is represented in body-fixed frame
and is denoted by Q € R3. The attitude kinematics is given by

R = ROX, (1)

where (-): R? — 50(3) is the skew-symmetric cross product operator and s0(3) is the Lie algebra
of SO(3), identified with the linear space of 3 x 3 skew-symmetric matrices. Note that the cross-
product operator is given by:

I 0 —I3 i)
¥ = |zo| = | w3 0 —x]. )
I3 —X9 T 0
The attitude dynamics is given by
JO=—-Qx JQ+ 1., 3)

where J is the inertia matrix of the body expressed in the body-fixed coordinate frame and 7, € R is
the control input torque which is applied to the rigid body about its center of mass. The rigid body
here is considered to be stationary in terms of translational motion.

Attitude Waypoint Navigation

The goal of the attitude waypoint navigation is to enable smooth reorientation of the rigid body
from its initial attitude to the desired final attitude. This navigation is realized by a given finite set of
attitude waypoints through which the rigid body is required to reorient itself. These waypoints are
given in the form of rotation matrices from body-fixed frame B to inertial frame Z ordered according
to a strictly increasing sequence of time instants, as follows:

Rd17Rd27 ey Rdn S 80(3),

4
with Rdi = Rd<ti) S SO(?)) and t; < tg < ... < ty. @)

Here, Ry, , Ry,, ..., Rq,_, are the intermediate attitude waypoints and Ry, = Ry is the final attitude
waypoint.

TIME-VARYING ARTIFICIAL POTENTIAL

The approach for guidance and navigation of the rigid body attitude, with equations (1) and
(3) describing its attitude motion, is formulated here. A bump function is used to design a time-
varying artificial potential function for attitude guidance, as described here. The artificial potential
function is designed as the product of a time-varying bump function that has compact support in
time, and a Morse function on the Lie group of rigid body rotations. A Morse function is a non-
degenerate function with a disjoint set of critical points.? Positive definite Morse functions form
the best candidates for Lyapunov functions on non-contractible manifolds, i.e., spaces that cannot
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Figure 1: Asymmetric Bump Function

be contracted continuously to a point. The stability analysis of the overall guidance and tracking
control is carried out to show stable trajectory generation through these waypoints, using Lyapunov
analysis with a time-varying Morse-Lyapunov function.

Bump Functions for Intermediate Waypoints

At each intermediate attitude waypoint, we design a time-varying function to describe the poten-
tial field. This is in the form of a smooth bump function that is positive in a compact time interval
and zero outside this interval. This function starts from zero and smoothly reaches a finite maximum
(positive) value in a finite time period, before smoothly decaying to zero in finite time. The finite
time periods of rise and decay are the one-sided widths of this function. These widths on either side
of the function can be equal or different. We call the left side of the bump function as a “smooth
step-up”’ function and the right side of the bump function as a “smooth step-down” function. The
function depicted in Fig. 1 has different widths on either side, and hence this bump function is
asymmetrical.
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Consider an ith asymmetrical bump function ¢;: R — R that is smoot
supported, given by

and compactly
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where At; =t — t;, 0y, is the width of the left side of the bump function and o,, is the width of
the right side of the bump function. The k;, and k,, are the scalar control gains that control the
steepness of the left and right side of the bump function respectively. The time instant ¢; is the time
when the rigid body reaches corresponding desired attitude waypoint R4,. The maximum value of
this bump function is unity when ¢t = ¢;. The derivative of the left side of the asymmetric bump



function is given by:
—ky, At?
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Note that qﬁli (t) is positive as t — t; is negative. Similarly the derivative of the right side of the bump
function is given by:
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and the derivative is negative since ¢ — ¢; is positive in this case.

Smooth Step-Down Function for Initial Attitude

We use a “smooth step-down” function for the initial attitude at time ¢ = 0, which starts at a
constant value of 1 (for ¢ < 0) and thereafter decays to 0 in finite time, as follows:

1 t € (—00,0)
anlt) = _ _—ht” ®)
2
(05 —1%) t €0,0),
where ¢ € [0, 0,) and oy, is the width of this function. The derivative of this function (for ¢ > 0) is,
—kyt?
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Smooth Step-Up Function for Final Waypoint

The bump functions used to go through the intermediate attitude waypoints are “two-sided”, i.e.,
they rise from 0 smoothly to a maximum value of 1 and then decay smoothly back to 0. But for
the final waypoint we need only a “smooth step-up” function that starts with zero and rises to the
maximum value of 1 and settles there. Consider the following function:

—kat?c
2(+2 2
05(6) = € 7T =B e (1) opty) (10)

1 t € (ty,00),

where o is the width of this function, k is the parameter to control the steepness of the function,
iy is the time when the rigid body reaches its final waypoint. The time derivative of this function,
which is positive in the time interval (t; — oy, %y), is given by:
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Attractive Potential

We define the attitude tracking error for the i** desired attitude waypoint as Q; = R’dri R(t) fort €
[ti_1,t;]. As the rigid body approaches the i*" desired attitude waypoint, the corresponding attitude
error (); decays to zero. Once the attitude waypoint is achieved, the rigid body then again reorients
itself to achieve the next waypoint. Thus, the rigid body passes through the series of reorientations.
The attitude error thus goes to zero in piecewise manner. This continues to occur, till the rigid body
achieves it’s final attitude and then stabilizes. The attractive potential AP(Q,t): SO(3) xRt — R*
is given by the following Morse function,??

AP(Qi,t) = (Ki(t), I — Qi), (12)

where K;(t) = ¢;(t)K, and K, = diag(K, Ko, K3) and ¢;(t) is a bump function. The positive
diagonal matrix K, consists of control gain values K, Ko, K3 > 0 and are unique. Representation

of the attractive potential is given in Fig. 2. This value reaches its minimum value of zero as
QZ' — 1.
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Figure 2: Attractive Potential

Repulsive Potential

The attractive potential is used to attract the rigid body to a desired attitude. Similarly, a repulsive
potential'® is used to avoid undesirable orientations. The rigid body should be able to avoid these
undesirable attitudes at all times. This paper assumes that the undesirable attitudes are present at
all times and are not changing. Hence, the function is not explicitly time-varying. This potential
function has non-negative values ranging from zero to infinity as the rigid body approaches the
undesirable orientation. The repulsive potential is an analytic function that is given by the following
exponential function, s

RP(R(t)) = ecos(¥) —rTRTv 1 (13)

where r € S? is the unit vector (in body frame) specifying the pointing direction of the sensor, and
v € S? is the vector (in inertial frame) pointing towards an undesirable direction. The term 77 RTv
specifies the angle between the sensor pointing direction and the direction vector to be avoided.
The angle W is the required minimum angular separation between them such that U € (0,7/2).
The positive constant f controls the shape of the function. The compact support of the repulsive



potential (on SO(3)) decreases as the value of f decreases. This ensures that the effect due to the
repulsive potential vanishes beyond the neighborhood of the minimum angular separation for the
undesirable direction. We enforce the condition of zero exposure of the sensor to the undesirable
zone. The above condition can be exercised with following constraint,

cos(¥) —rTRTv > 0. (14)

Figure 3: Repulsive Potential

The repulsive potential is illustrated in Fig. 3 .

The Potential Function

The potential function is the sum of attractive and repulsive potential functions. Let R4, € SO(3)
denote an intermediate desired attitude at time ¢;. The potential function is given by:

U(Qit) =Y  AP(Qi,t) + RP(R(1)), (15)
i=1

where AP;(Q;,t) and RP(R(t)) are given by equations (12) and (13), respectively. The potential
function is explicitly time-dependent. The attractive potential is AP;(Q;,t) = 0, when Q; = I.
Additionally, the bump function for a particular desired attitude waypoint is positive only in the
respective time intervals. Outside those time intervals the attractive potential is not acting and equal
to zero. Unlike the attractive potential, the repulsive potential is not time-varying and it is always
acting. From the condition in equation (14), we see that the repulsive potential is always positive.
Hence we can conclude that the potential function is a positive definite function at all times. The
derivative of the above potential function is given by:

d d d
SU@Qit) = Z —TAP(Qit) + = RP(R(1)), (16)
LU0 = (). T - Qi) + Sk (@) +p -2 (7)
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where p is given by
f

—f(RTv)*r cos(V) — rTRTv
B (cos(¥) — TTRTU)2€

; (18)

Sk ) (Qi) = vex(K;(t)Q; — QiTK;(t)) and vex(-): s0(3) — R3 is the inverse of the (-)* map.

Design of the Control Law

Theorem 1. Consider the attitude kinematics and dynamics of a rigid body given by egs. (1)-(3).
Let t; and Ry, denote the sequences of time instants and desired attitude waypoints at these instants,
as defined by (4), and let QQ;(t) = R;R(t) fort € (ti—1,t;] be the attitude error, as defined earlier.
Define

$i(t) € (ti — 0, ti]
Lo(t) = 4 ds(t) € (ty —oyp,ty] (19)

0 elsewhere,

where d.’il and d’f are the derivatives of the smooth functions defined in equations (6) and (11)
respectively. The time instants t; and t; are those at which the rigid body reaches the intermediate
attitude waypoints and the final waypoint. Let L(t) be the positive definite matrix such that L(t) =
Lo(t)I + J, where Ly(t) is positive semidefinite. Define the control law as

Te = =Sk ) (Qi) — p — L(t)L, (20)

where p is as defined in (18), Sk, 1) (Qi) = vex(K;(t)Q; — QF K;(t)), and vex(-): so0(3) — R3 is
the inverse of the (-)* map. The control law (20) then stabilizes the attitude dynamics of the rigid
body to (R,) = (Ry,0).

Proof. Consider the following (candidate) Morse-Lyapunov function:
1
V(@Qi2,t) = 30170+ U(Qi1), 1)

defined piecewise on the time interval (¢;_1,¢;]. It can be seen that V' (Q;, 2, t) is a positive definite
function. Using equation (16) the derivative of the above Morse-Lyapunov function is given by:

) . d
V=0ls0+ ZU(Qi.1). (22)

Using equation (3) we have the following:
V=0T (JQx Q47+ Sk Qi) +p- Q+ dilt) (Ko, I — Qi). (23)
Substituting the control law from equation (20), we get,

V = —QTL(H)Q + ¢i(t) (Ko, T — Q;)

= QT (Lo()I + N)Q + i () (Ko, I — Q) &4
0 7 03 i/



As the second term on the right hand side in the derivative of the Lyapunov function in eq. (24)
is non-definite, it may need to be compensated by the negative first term. However, as this term is
transient in nature, we design the Lo(t) to mimic the increasing and decreasing portions of ¢;(t) in
order to compensate its effect over the time interval (¢;_1,¢;].

When the rigid body approaches the final desired attitude, the attractive potential will have ¢ ¢(t)
as the “smooth step-up” function. As the derivative ¢ ¢(t) is positive, the term b () (Ko, I — Q)
will be positive in the time interval (t; — of,¢]. So we design Lo(t) = ¢f(t) to compensate for
this effect during this transient time interval when ¢ #(t) is not zero. This ensures that the transient
effects are mitigated and the attitude error Qy = I when t = t;. For time is ¢ > ty, ) #(t) is zero.
As aresult, we get

v =—0ljave>t. (25)

Therefore, using the invariance principle on the state space TSO(3), we can conclude that (R, €2)
converges locally asymptotically to (R, 0).

The attractive potential function has a global minimum value when R = Ry and ¢t = t;. Thus,
the global minimum is with respect to R € SO(3) and ¢t € Ry. The repulsive potential has a
global maximum with respect to R € SO(3) in the undesirable zone, i.e. in the region where
U > cos! (rTRTv) From the equation of repulsive potential (13), we can conclude that when
rTRTy — cos(W), then the potential function U — oo. As, the rigid body approaches towards the
undesirable zone, the control torque generates large repulsive torques. Thus, the rigid body reorients
itself away from the undesirable zone and towards the global minimum.

O]

NUMERICAL SIMULATION RESULTS

This section gives some simulation results to demonstrate the potential function formulated in the
earlier section. For the purpose of simulation one intermediate waypoint is considered.

Discretized Equations of Motion

For this simulation, the continuous dynamics and kinematics equations are replaced by the cor-
responding discretized equations of motion. A Lie group variational integrator (LGV]I) is used for
discretizing the continuous equations of motion. A LGVI preserves the structure of the configura-
tion space, which in this case is the Lie group SO(3), without any parametrization or reprojection.
Variational Integrators®* are a class of numerical integrators which conserve the momentum map
and symplectic structure when the dynamics is almost conservative or fully conservative. The dis-
crete equations of motion for Lie Group Variational Integrator scheme are given by,?

Ry 11 = Ry Iy,

26)
JQi1 = FLIQy + by, (

where h is the fixed time step such that h = t,,; — t, subscript k is the k" time step of the
simulation and Fj, = exp(h;) € SO(3) guarantees that Ry, evolves on SO(3).
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Figure 4: Bump function (left) and it’s derivative (right).

Numerical Simulation

The time-varying artificial potential scheme presented in this paper is simulated for a rigid body nav-
igating around one undesirable zone towards its final orientation. This simulation has one intermedi-
ate and one final desired attitude waypoint. The simulation for the above scheme assumes the inertia
matrix as .JJ = diag(0.08,0.15,0.19) kgm?. The direction of sensor in body-fixed frame is given by
7 = [1,0,0]T. The initial attitude is given by R® = exp([0, 0, 150x (/180)]T) and the desired final
attitude is RF = exp([0,0,0]T). Finally, R = exp([0, 0, 90x(7/180)]T)x exp([0, 7x(7 /180), 0]T)
defines the one intermediate waypoint. The undesirable zone is located at exp([0, 0, 45x (7 /180)] T)x
exp([0, 10x(/180), 0]T). The minimum angular separation is ¥ = 15°. The time step is h = 0.01s
and the diagonal gain matrix is K, = diag(0.05,0.0095, 0.159).

The simulation begins at ty = Os and ends at ¢y = 40s. The rigid body reaches the intermediate
waypoint at ¢; = 15s and the final waypoint at £y = 30s. Once the rigid body achieves the desired
final waypoint at £y = 30s, the rigid body then maintains its final attitude. The bump function for
this simulation and its corresponding derivative is shown in Fig. 4 The results of the numerical
simulation are summarized in Fig. 5

In Fig. 5a, at ¢ = Os the attitude tracking error plot shows the error between current attitude and
first desired attitude waypoint. This error is almost zero when time approaches 15 s as the rigid
body moves closer to the desired intermediate attitude waypoint. After ¢ = 15s the attitude error
increases instantaneously to a finite value as the new desired attitude, which is the final desired
attitude, becomes the new goal. Thus, the attitude error goes to zero in a piecewise manner as
expected. At ¢t = 30s, the rigid body achieves its final attitude and stabilizes there. The Fig. 6
shows the shows the pointing direction of the sensor in the inertial frame, which is represented as
an unit vector on S2.

CONCLUSION

In this paper an integrated attitude guidance and tracking scheme that utilizes time-varying ar-
tificial potential functions, is proposed. This continuous time scheme is designed directly on the
configuration space of rigid-body attitude motion, SO(3). The scheme can generate a desired atti-
tude trajectory through multiple attitude waypoints and then track that desired trajectory through the
waypoints. The guidance of the rigid body is achieved by assigning attractive time-varying artifi-
cial potentials to desired attitude waypoints, while avoiding undesirable orientations using repulsive

10



(0] L I L
0 5 10 15 20 25 30 35 40

t (s)
(a) Attitude Error

] 5 10 15 20 25 30 35 40

t (s)
(b) Angular Velocities
0.8
__06r ]
z
— 0.4r B
=
0.2 i
o — ! l\j\f\J | I
0 5 10 15 20 25 30 35 40
t(s)
(c) Control torque
3
=
&
=
(5] -
ob
=
<
=
g ]
o
R=
i O L L L L " &
0 5 10 15 20 25 30 35 40
t(s)
(d) Principal Angle

Figure 5: Simulation Results

potentials. These attractive potentials are generated using asymmetric bump functions of time. A
possible future research direction is to consider the full translational and rotational motion of rigid-
bodies in SE(3) and create an integrated guidance and control scheme for this full motion. Another

11



Figure 6: Trajectory of sensor fixed in body-frame

research direction is to extend the above scheme to undesirable zones which are dynamic in nature.
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